1/5=t^2

Simple and best practice solution for 1/5=t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5=t^2 equation:



1/5=t^2
We move all terms to the left:
1/5-(t^2)=0
We add all the numbers together, and all the variables
-1t^2+1/5=0
We multiply all the terms by the denominator
-1t^2*5+1=0
Wy multiply elements
-5t^2+1=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $

See similar equations:

| 0.5-0.3y=0.7-0.4y | | 4{a+4}-2=34 | | 2y^2-12y-84=0 | | 10z+6=116 | | 6u=5.59 | | -9+4p=15 | | 5t^2-5t+1=0 | | 2(x+4)/7=13 | | w÷4=13 | | 2-3x=5x+6 | | 32c+0.75=-47c | | 8(5+n)=4(6+4n) | | t÷2.8=3.85 | | 6x^2-9x-20=0 | | 8y+12=5y-1 | | 7+10x=-183 | | 4(u+8)=8u+48 | | -2+5m=3m+m | | 4x+6=51−5x | | x-1.6=2.7 | | (X-2/3)+(x+5/2)=1/3 | | X-2/3+x+5/2=1/3 | | 7x/6=28 | | -2(-5x+7)+x=-91 | | 35=x/5 | | t+1/t=6 | | 34=2(u+3)-6u | | 5-3m-4=-23 | | 4v=10 | | 7x=3x+9 | | 8b-5(1-8b)=283 | | 2x+2=-12+2x |

Equations solver categories